Previous: List of symbols Up: List of symbols Next: Greek symbols
This is an automatically generated documentation by LaTeX2HTML utility. In case of any issue, please, contact us at info@cfdsupport.com.

Latin symbols

    skin friction coefficient
    specific heat capacity
    diffusion coefficient
    gravity force
    internal energy
    surface normal
    pressure
    heat flux
    source term
    time in general
    time time step
    velocity components
    velocity vector
    friction velocity
    velocity components
    velocity components
    space coordinates
    space step
    vector of space coordinates
    space coordinates
    space coordinates
    general variable
    general constant
    concentration
    test case number
    diameter
    cell volume
    rate-of-deformation tensor
    Deborah number
    vector of viscous fluxes
    vector of viscous fluxes
    spring constant
    vector of viscous fluxes
    characteristic length
    velocity gradient
    Péclet number
    characteristic radius
    vector of viscous fluxes
    Reynolds number
    vector of viscous fluxes
    physical time
    vector of viscous fluxes
    stress tensor
    mean velocity
    vector of unknowns
     anti-symmetrical part of velocity gradient
    Weissenberg number

 

Next: ParaView Up: Introduction Previous: Introduction   Contents   Index

Turbo Blade Post

The Turbo Blade Post is designed for postprocessing any rotating machines. Both radial and axial machinery. Pumps, water (hydro) turbines, compressors, turbochargers, propellers and many more.

Turbo Blade Post is product of company CFD Support s.r.o. (www.cfdsupport.com). It was especially created to enable an effective postprocessing of rotating machinery. Turbo Blade Post is a set of plugins for http://www.paraview.org/ParaView software http://www.paraview.org/.

Latin symbols

$ \color{white} c_f$     skin friction coefficient
$ \color{white} c_p$     specific heat capacity
$ \color{white} {\mathsf {d}}$     diffusion coefficient
$ \color{white} g$     gravity force
$ \color{white} h$     internal energy
$ \color{white} \vec{n}$     surface normal
$ \color{white} p$     pressure
$ \color{white} q$     heat flux
$ \color{white} {\mathsf {s}}$     source term
$ \color{white} t$     time in general
$ \color{white} \Delta t$     time time step
$ \color{white} u$     velocity components
$ \color{white} \bm{{\mathsf {u}}}$     velocity vector
$ \color{white} \bm{{\mathsf {u}}}_{\tau}$     friction velocity
$ \color{white} v$     velocity components
$ \color{white} w$     velocity components
$ \color{white} x$     space coordinates
$ \color{white} \Delta {\mathsf {x}}$     space step
$ \color{white} \bm{{\mathsf {x}}}$     vector of space coordinates
$ \color{white} y$     space coordinates
$ \color{white} z$     space coordinates
$ \color{white} A$     general variable
$ \color{white} C$     general constant
$ \color{white} {\mathsf {C}}$     concentration
$ \color{white} {\mathfrak{C}}$     test case number
$ \color{white} D$     diameter
$ \color{white} {\mathsf {D}}$     cell volume
$ \color{white} \bm{{\mathsf {D}}}$     rate-of-deformation tensor
$ \color{white} D\!e$     Deborah number
$ \color{white} {\mathsf {F}}$     vector of viscous fluxes
$ \color{white} {\mathsf {G}}$     vector of viscous fluxes
$ \color{white} G$     spring constant
$ \color{white} {\mathsf {H}}$     vector of viscous fluxes
$ \color{white} L$     characteristic length
$ \color{white} \bm{{\mathsf {L}}}$     velocity gradient
$ \color{white} P_e$     Péclet number
$ \color{white} R$     characteristic radius
$ \color{white} {\mathsf {R}}$     vector of viscous fluxes
$ \color{white} Re$     Reynolds number
$ \color{white} {\mathsf {S}}$     vector of viscous fluxes
$ \color{white} T$     physical time
$ \color{white} {\mathsf {T}}$     vector of viscous fluxes
$ \color{white} \bm{{\mathsf {T}}}$     stress tensor
$ \color{white} U$     mean velocity
$ \color{white} {\mathsf {W}}$     vector of unknowns
$ \color{white} \bm{{\mathsf {W}}}$     anti-symmetrical part of velocity gradient
$ \color{white} We$     Weissenberg number

Previous: TCFD Introduction Up: TCFD Introduction Next: TCFD Unique Value
This is an automatically generated documentation by LaTeX2HTML utility. In case of any issue, please, contact us at info@cfdsupport.com.

TCFD\textregistered = Turbomachinery CFD

TCFD\textregistered is a comprehensive CFD workflow for turbomachinery simulations. This workflow covers complete process from the basic (usually CAD) data over CFD analysis to significant engineering results. TCFD\textregistered is based on the OpenFOAM® software. It is the final outcome of a many year development of the team of CFD Support engineers and developers.
TCFD\textregistered is not dependent on other software but it is fully compatible with standard OpenFOAM® and other software packages. It was originally designed for simulating rotational machines, nevertheless it can be used for a wide range of various CFD simulations.

 The package includes real tutorials. The tutorials help the user to operate the model data. The user can easily repeat the whole process with his own data.

CFD Support s.r.o. provides full technical support. TCFD\textregistered is maintained and regularly updated. CFD Support engineers are instantly working on additional software modules and extensions covering even more physical problems. To ensure the smooth start the extensive training is provided. Experienced lecturer shows the full functionality and answers all the possible questions.
TCFD\textregistered is highly customizable. All the OpenFOAM® parts of the package are developed under GPL (GNU GENERAL PUBLIC LICENSE Version 3.) All the OpenFOAM® based components are provided with their source code. Having technical support, any additional functions can be added all over the workflow.
In TCFD\textregistered its developers made good use of many years experience with using and developing CFD software. Especially for this workflow were developed special OpenFOAM® based boundary conditions e.g. to handle the rotor – stator interface or boundary conditions for the inlet and the outlet of the computational domain. The solvers for TCFD\textregistered are very robust and they were heavily tested on real machine cases and showed perfect agreement with available measurements. The solvers are robust enough to handle the extreme flow conditions, it shows excellent performance, for example, at transonic flows.
The TCFD\textregistered workflow also contains a number of scripts, OpenFOAM® utilities and OpenFOAM® function objects for preprocessing and postprocessing. To keep complete independence of this workflow, the computational mesh is created using OpenFOAM® utility snappyHexMesh. Of course using snappyHexMesh mesh is not necessary – any external CFD mesh can be imported and used instead.